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KINETIC THEORY AND THE PRINCIPLE OF MATERIAL FRAME-INDIFFERENCE
IN THE MECHANICS OF CONTINUOUS MEDIA"

V.S. GALKIN and V.I. NOSIK

The property of Boltzmann's kinetic equation in the presence of Euclidean
transformations such as non-stationary rotations and translations of the
frame of reference is discussed. It is shown that in the transition
from an inertial frame to a rotating frame, in Boltzmann's eguation
additional intertial terms appear, and in the transition from non-inertial
to non-inertial, the equation is invariant under the above transitions.
The algorithms, and the results of an approximate method for solving

the equation, of the Chapman-Enskog method in particular, are also
invariant. The additional terms appear, specifically, in the expressions
for stresses and the heat fluxes in Barnett's approximation, and in this
sense these expressions are frame-dependent. Because of the condition
that Knudsen's numbers should be small, this limits the domain of
applicability of one of the basic postulates of the axiomatic theory of
continuous media, namely the principle of material frame-indifference

(or the principle of material objectivity), in accordance with which the
constitutive (determining) relations should be invariant under continuous
changes of the frame of reference. The existing papers on this subject
axe critically analysed.

For more than ten years a discussion /1-7/has been going on as a consequence of the well-
known fact that the formulae for the stresses P;; and heat fluxes ¢ in Barnett's approximation
contain, as c¢ofacters, the components of the spin tensor

Qpn, = 1y (uy dxn —~ Oupyiday)
and consequently these formulae are invariant under a Euclidean type cf transfcrmation (see
/8/). 1In other words, in the expressions for Py; and ¢, when passing from an inertial to a
non-inertial frame, additional terms appear, i.e. the consequence of the frame being non-
inertial will not be merely the appearance of 'Eulerian' inertia forces in the eguation of
momentum.

Hence, it was initially concluded in /1-3/ that the principle of material frame-indifference
was limited (see 9, 10/). The invariant terms in P;; and ¢ were indicated in /2/. The
properties of the Maxwell transfer equaticn for P;; and g;. and the iteration method for their
sclution in a non-inertial frame of reference were studied; it was remarked that the non~-
invariance in the sense mentioned abcve is due to the action of microscopic Coriclis forces.
The action of the latter was studied in more detail in /3/. Some inaccuracies allowed in /1,
2,/ were corrected in /5/ (see Sect.6 below).

Subsequently, the guestion of applying the conclusions which follow from kinetic theory
to the principle of material frame-indifference /4—6/, and the properties of Boltzmann's
eguation in the presence of the Fuclidean transformations were studied /4/. An incorrect
deduction that the sclutions of Boltzmann's eguations satisfy the principle was made: this
even led to the conclusion that the higher approximations, starting with Barnett's, of the
Chapman-Enskcg and Maxwell metheds for solving Boltzmann's eguation are incorrect as the
Knudsen number Kn—0 /6/.

Barnett's approximation for Py and ¢ was again considered in /7/ and it was suggested
that the principle of material frame-indifference should be generalized (see Sect.7 below).

The foundations of the mechanics of centinuous media, and their connection with the
kinetic theory are of great importance, /11/. Papers /1—7/are concerned precisely with
discussions on these subjects. However, a sufficiently full treatment of the geustions was
not given, and some conclusicns were false to varying degrees (especially in /6/). This was
due to confusion in the definitions.

The aim of the present paper is to analyse successively the questions formulated in /1-7/.
The properties of Boltzmann's equation in the presence of Euclidean transformations, then of
the algorithm of the Chapman-Enskog method, and the stresses in the heat flux in the Barnett
approximation are studied. BAs a result, it is concluded that there are nc contradictions
between the properties of the eguation and its approximate solutions. Some examples and.
the domain of applicability of the principle of material frame-indifference are discussed.
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1. Let us introduce scme definitions and notation /1, 10/. Avector, its components and the
column-matrix of the latter are denoted by the same lower-case letters (for example, X, i, I),
and the similar quantities for the second-rank tenscr are denoted by the same upper-case
letters (for example, P, Py, P), with i, j=1, 2, 3, Summation is carried out with respect
to the repeating indices, and the matrix formulae for transforming vectors and tensors are
used when the frame of reference is changed.

Let Z, Z*, Z° be orthonormalized Cartesian frames of reference, only I being inertial.
The coordinates in these frames are connected by the transformations

*=R* )z + b*(t), =R () z + b (1) (1.1)
t*=t+dt C=t+d
The matrices R*and R° which describe the rotation are orthogonal (RRT = RTR= I, where
I is the unit matrix). For brevity, we set b;(t)==0,d =0, since the frame-dependence of
P;; and g;is due to its unsteady rotation /1—7/, and the conclusions reached below do not
depend on this assumption.
The coordinates of the Z°- and ZIZ*-systems are connected by the relations
z° = Qz*, Q = R*R*T (1.2)

The matrices of the angular velocities of the coordinate axes of these systems relatively
to 2 are

W*=R*R*", W'=RRT, We=0QW*Q" +(QQ" (1.3)

(the dot means differentiation with respect to time t).
By (1.1), for the velocities of the molecules & =x', §* = x*, £ = x” we have

= R* — R*z, F=0Q* ~(Qz* (1.4)
From (1.1)—(1.4; we have the following expressions for the accelerations cf the molecules:
E*' = R*F (z*, 1) + 2W*E> — WHz* — WU {1.5)

EF = RF (2, 1) + 2W°F + W72 — WS

Bere F = F (x.?) is the external force referred to the mass of a molecule m, and the
remaining terms correspond tc the Coriolis rotational and centripetal accelerations.

Following /1, 6, 7/, we describe the n-rank tensor with components a,.. as frame-~
. . . *® . .
indifferent if for (1.1} we have a’;'x,,-‘" = H‘m ]-?’,"n_,?a.,x int for example, for a frame-indifferent
second-rank tensor A* = R*AR*T for a vector, w* = R*w. or fcr a scalar a* (x* 1) = a(x. {).
as shown in /4, 6/, the velocity distributior function of the mclecules f = f (i x,1)
the element of velocity space df and, therefcre, the gas density p are frame-indifferent
ar

scelars. Since

by virtue cf (1.4} the macreosceopic velccity u is net a frame-indifferent vector, because
u* = R*u — R¥z. u® = Qu* = Q'z* (1.6}

The tenscr V with components V;; = du,; dx;, alsc is not frame-indifferent since, by (l.€),
(1.3}, we have

= R* (I* — W*) R* = R'T (1° — W) R° (1.7

At the same time, & tenscr with ccmponents which are derivatives cf 17;; with respect to
7y is frame-indifferent.
We emphasize that for the tensor V* — W*, from(1.7) we have

T*— W+ = QT (1" — W) Q (1.8)

By (1.4} and (1.6), the vector of the molecule's own velocity e=§&—u(c*= R*c. ¢’ = Qc*)
is frame-indifferent. Therefcre, the central moments of the distrikution function

MY =m (e0f dE = [e] (1.9)
and the derivatives with respect to their coordinates, in particular the stress tensor P with
the components P;; = [c;c; — 1/30;;¢2], the pressure p = V5[ ¢?]. and the heat flux q =1/, [cc?], are

frame-indifferent as well.

2. The fact that the frame-indifference of P and q follows from the kinetic theory led
spezialle /6/ tc a false conclusion: the presence of the terms with factors Q, in Barnett's
stresses P;;® and the heat fluxes ¥ are allegedly a consequence of the inaccuracy of the
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approximate methods in kinetic theory, in particular, of the Chapman-Enskog method, However,
generally speaking, it does not follow from the frame-indifference of the tensors that the
formulae which express these tensors by others are invariant under the transformations (1.1)
(the scaling rules for the frame-indifferent quantities, and not the dependence of these
quantities on the space derivatives of macroparameters are frame-independent). The requirement
of such an invariance is an additional postulate of the material frame-indifference principle
/9, 10/. Below we show that the violation of this principle in Py?®, ¢, is a consequence of
the corresponding properties of Boltzmann's equation.

The false conclusion made in /6/ is connected also with the faulty interpretation of the
findings in /4/.

3. The findings cof /4/ consist of the following. Boltzmann's equation in an inertial
Z-system has the form

0 N T B 7 )W S YO (3.1)
%

ot £ 61] vl

The quantity F was assumed /4/ to be an arbitrary function of &, However, then the third
term on the left in Eg.(3.1) should be expressed /12/ in the form & (§/ 1) d%;.

The collision zﬂtegral J (f) is invariant under the Euclidean group of transformations,
/4/. In fact, it equals the difference between the "increase” and "decrease” of the number
of molecules in the element of phase volume which is invariant under the transformations (1.1},
the difference being caused by the instantaneous "point" collisions of molecules, This preperty
is particularly evident for models of the collision integral of the relaxation type,

In a non-inertial X*-system, Eq. {3.1), taking (1.1) and (1.4) in%tc account, can be re-
duced tc the form

A « O

e D pw G g 2
ot ) Gy * ) 6'{.*MJ ('{) (3.2
o4 i
The guantity &% is given by (1.8). 1In a Z ~system we obtain the same equation by
replacing the asterisks by degrees. Thus, Boltzmann's eguaticn maintains its form, and in

this sense it is invariant under the Euclidean transformations /4/. Clearly, in the same sense
the eguation cf momentum, which is obtained by multiplying Egs. (3.2} by mi* and integrating
over the whole velocity space,

"l*z’?*"%% (or =55 (3.3)
Frame Fx*oq) — 007 px - WEWT 0 WY ‘,IA
Z: —-—;—~u*ﬂ(* ?5\=Pu+~p5\., phr)TT
is alsc
on locities, we obtain the

centinuity

]

a i ) I term in {3,4) "vanishes QeC"“Sv cf the

anti-symmetry ¢f wW. In a ZI-system, we may & the asterisks and assume W,;; =10
This ;r:;e.w cf invar i sce c¢f Boltzmann guaticn led Wang /4, to the cenclusicn th
materizl frame 1ds irn kinetic thecry. However, this principle does not fcl
in

As is well xnown, the

i

]

e

oW

from the ln\aziance cf the equation cf momentur in the form (2.3 (ncr, generally speak
&

=

,
from Newt second iaw on introducing the ccrresponding acceleration field /9/). 8till less
is the prlncirl satisfied in Kinetic theor} Before proving the above, we shall pay attenticn
to the following. If F,=0. then £/ = 0, and in passing from a 2~ to a Z*-systen

(briefly, for I — I*) additional terms appear in Beltzmann's eguation since §* == (1. However,
for IS* . I° this term is invariant. The eguation of momentum has the same properties as
well,

Precisely these properties are characteristic for the central moments of the distribution
function (1.9), in particular P and gq even with F =0

4. Since the central moments of the distribution function are integrals with weights
which are the products of the intrinsic velccity of the molecules ¢ =% —u, we pass in (3.1}
from the variables & x, ! te c¢,x and t. By what was said above regarding its properties,
the collision integral is invariant under such a transformation (see /8/), On performing
certain operations /8/, and using the equation of momentum (3.3) in a I -syster, we obtain
the following Boltzmann eguation for = f(e, x. 1)
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D . o 1 9T, g of
Tr T T ay Vi = () @9

We must stress that the terms with F; have been cancelled, and it is out of the guestion
to speak here about the invariance discussed in Sect.3.

The source of the inertial terms in (1.4) are V,; by virtue of (1.7), and Df/Dt=d/d +
u;0f 6z;; the remaining terms are invariant under the transformations (1.1), By the formulae
in Sect.l, we obtain

Df _ D¥* | 1 o u O*
or="Di T Wi 5z

Therefore Eg.(4.1) in a Z*-system takes the form

oT . *
DI e e L LT O e awey e =) (4.2)
i i i

The appearance of the term 2W;*c;*0f*. dc;* is physically due to the microscopic Coriolis
forces which are not eleiminated by using a macroscopic eguation of momentum.

Thus, as X —» Z* additional inertial terms appear in Boltzmann's equation, and as X*— I
this equation is invariant: in the Z°-system, we obtain Eg.(4.2) by replacing the asterisks
by degrees.

Let us multiply Eq.(4.1) by mee, and integrate it with respect to ¢. For Maxwellian
molecules, when the viscosity p is proportional to T the integration of a collision operator
is carried out in explicit form, and as a result we obtain a system of equations for Py, (the
system is open because derivatives of third-order moments occur in the equations). Of course,
it is important that there are no terms with outside forces. However, the equations for P,,*
similarly obtained from (4.2) will contain inertial terms. Strange though it may seem, this
property of the equations for the stresses led Spezialle /6/ to a "final" conclusion regarding
the incorrectness of the Chapman-Enskog and Maxwell methods.

Clearly, the same results are obtained in integrating Egs.(3.1) and {3.2) with weights:
the integral of the third term on the left of (3.1) is zero unlike the corresponding integral
in (3.2). It is this "asymmetry"in integrating Boltzmann's equation that explains the above
properties of the central moments of the distribution function.

The established properties are fcund in the results of asymptotic methods (Kn — Q) for
solving Boltzmann's equation as well. Let us consider the Chapman-Enskog method, which is
most criticized in /6/. The aim of this method is to obtain an expansion for the scluticn
cf Becltzmann's equation, in the form of series

°

-9
f~ 3 foar fo9 — Kn",
n=0

where f©® is the local Maxwellian function. The guantities f™ are functions of the intrinsic
velocities ¢; this is a general property of the asymptctic expansicns of this equation that
are external (with respect tc Knudsen's layeres'. The series

o o

Pu~ T Py g~ 3 g PE=0. ¢f=0

n=0 n=0
which clese the equaticn cf conservation are computed from the known f™. The essence of the
Chapman-Enskog method consists precisely in obtaining such series; the gquestion of how many
terms should be considered is sclved separately for each type of flow depending on the accuracy
required. On cecnsidering P, ¢, we cbtain the Navier-Stokes and Fourier equations, and Py
A yield the Barnett eguation.

Using Eg.(4.1), the general algorithm of the Chapman-Enskog method can be written in the

form

n . »
3 D [("_m’ v 1 arin aim-m) a,('v)
E _"Z_BI__ — ¢ ! iio9r V:jcj L () =1 (f5-1) (4.3)

[
m=0 m=g

[Z3 p 0z; de;

This expression is an eguation for jo-vg (8J) is understood as the corresponding result
of expanding the collision integral in series in Kn. the quantity J(f) being a collision

integral linearized with respect to f. The appearance of the operators D,, Dt is a con-
sequence of the exclusion, employed in the method, of the time derivatives with respect to
macroguantities, using the equations cf conservation (3.3) and (3.4) in a Z-system. The
action of these operators on the macroguantities is given by the formulae

Do _ Dou 1 DT 27

T——pvu, D1 -—T(F-—Vp). i = —--3—-Vu (4.4)
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[N Dt o oz D = T 3k

(m) (m)
DopsiP =0 Dozt . g ar DT 2 <p="j")Vij+ 6g.” )

We note that in almost all handbooks which treat the Chapman-Enskog method, the elimina-
tion of the partial and not of the total derivatives of the macroquantities with respect to t
is considered: in the stationary case this may lead to misunderstandings.

Finally, /", n>1, is the sum of the quantities with the coefficient-functions e. which
contain the products of tensors of different ranks, formed from the space derivatives with
respect to u;, T and p, the derivatives being of different orders. The tensors constructed
from the derivatives with respect to frame-indifferent scalars 7,p and Vu are frame-
indjfferent as well. The components of the velcoity u; do not appear in explicit form,
but only their derivatives, i.e. the components of the non-frame-indifferent tensor V.

Not only the terms of Eq.(4.3) which contain V);;, but alsc the operators (4.4) (and not
only D,u;'Dt as stated in /6/) are the source of inertial terms. In fact, for example by
(4.4) we have

D, o7 & 27 ar D, a4 - v
B =~ V= Veg s Ve =g F TR T

where the first terms are frame-indifferent.

Consequently, as X -» I* in (4.3), only those terms which include the components of
tensor V, undergoing the transformation in accordance with rule (1.7) will be invariant. For
the Z*-system in (4.3} we must add an asterisk everywhere at the top, and write V;* — W;;*
instead of 17;;; because of this there appear, generally speaking, terms with a factor W;*,
which are frame-dependent. The resulting eguation is invariant under Z* — Z° by virtue of
Eq.{1.8), and Vy* — W;;* is replaced by V,;;5— W .

Thus, the general algorithm of the Chapman-Enskog method is non~invariant under X — I*
and invariant under I* — I%; that is the initial properties of Boltzmann's eguation are
maintained in the Euclidean transformations. In the Maxwell method, the expansion of the
central moments of the distribution function in series in Kn is performed by the same
procedures as in that of Chapman-Enskog. The Grad method is an extension of the latter to
the case of arbitrary intermolecular forces. It can be similarly shown that the algorithms
of these methods have the same properties during the Euclidean transformations. Finally, a
segment of Hilbert's series for f can be cbtained from the corresponding series in the
Chapman-Enskog method by re-expanding u,. 7 and p which the method contains, in series in Kn.

5. To a first approximation of the Chaprman-Enskog method for P,; and g¢; we obtain the
well-known expressicns cf Navier-Stokes and Fourier which satisfy the principle of materia:
frame-indiffererce.

Let us examine re d
was the subject of discussion
to those of Navier-Stokes, fo
initial frame cf reference (see

me tail the Barnett apprcximation (precisely this approximaticn
] in /1, 2, 3=7/. The expressions for the terms, additional
e stress tensor components have the fcllowing form in the
bl A

1

2 - - [ i1 BN -
Pl =0V 1) — 'i<‘~F"j—k_$‘-p"" > - (3.1)

TN 1 v k )
<I 41:‘ K _2<\I ii.‘>]). \/} *'\1)3_"71_<7.11> -

. N LI R ,
-—;37— Pl = ws e KT AT D+ ws <V Vi)

p? . 1 1 a4
Wy = Ky (A= (4~ ‘4;1)'—‘—3'6u‘4~w A.i:‘—aﬁz—]‘
In the general case, the coefficient A . a =1.2, ... 6. depends cn temperature T; here

u is the viscosity.
Let us perform the transfcrmations X — I* and I* — ¥°, then, using Eg. (4.2}, calculate

I . .
directly Pfj) in the I*-system and compare the expressions obtained.

From among the tensors in (5.1} only V is non-frame indifferent (the guantity Ty and
the tensor (V) are frame-indifferent)!. Let us pass to the I*-system. In matrix notaticrn
we have

—wy ({FTD + 2LADIDY = —wp* {(R¥TVHI*R*) +
(R¥TWH*U*R*Y — (R*TV*W*R*) — (R*™W*V*R*) +
2 (R*T (I*DV*R*> — 2 (R*T(V*) W*R*))
Taking into account the equalities
2RVPOWES = (I*W*y — (WHT*), W% = —W,*

we finally cbtain
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PO = T* + ©*B, B = 2<W*H*) — CWAIW*) + 4 (V*> X W*) (5.2)

with P*® = R*POR*T,

Here I'* denotes the right side of Eq.(5.1) with an asterisk at each variable.

In passing from Z* teo Z°, from the group of terms I'* in P°® = QP*® QT inertial
terms analogous to o*B are added, and w,*, V*, W* is replaced by w;°, V°, §Q7, that is

0 {2<Q°QTV) — KQQTQQT) + 4 KO} (5.3)

Let us transformthe terms in the expression for B in (5.2), using the equation V* =
QTV°Q — QTQ° and formula (1.3) for W'. Taking into account <{Q'QTW = (WQQT), (QQTY =0
we cobtain . . 5

0 QBQT = 0@ {2(QTWQ — Q7¢): (5.4)

QT1VQ — Q7Q) — (QTWQ ~ QTOHQTWQ — ¢TO') +
44QT <VHQ QW0 — Q@) QT =
1" {2 KWV — CWWD o+ 4 7 W —
20071 + QAP — 4LV QT
Adding expressions (5.3} and {(5.4) we see that the additional inertial terms are cancelled
out, and FP°@ takes the form (5.2) when the asterisks are replaced by degrees.
We shall obtain relation (5.2) directly from Boltzmann's equation in the Z*-system (4.2),
The formal difference from the inertial case is that, firstly, in excluding D*u*/Di on
account of (3,3) we must substitute F;* instead of F;, and secondly it is necessary to take
into account the additional term 2W;*¢*@f* oc;*. Like (5,1), we find that the contribution
of the first factor is w*<{F*);. Hence follows the additional term of P*®
©* (2 WY — (W W
To take into account the second factor it is sufficient to recognize tc which terms of
P*2 the last term on the left in (4.1) contributes. Analysing the derivation of PW® in /8/
we can see that the consequence of this term is the appearance in formula (5.1) of the last
term in curly brackets for .. and the last term with factor ws. Replacing Vy; by Vi * — 2W,*
in these terms and taking intc acccunt the equation {(W*) == 0. we find one more additional term:

i N
0% (V) WA = — 20* ((Vrd Wy = (Vid W)
The above expression is written in this form in /1/ with K, = 2 for Maxwellian molecules,
Surming the results we again obtain fermula (5.2),
The same results are found for ¢®, In a ZX*-gystem we obtain

8,*

o _ p¥ 2 8
i 3 T*

=%

* AT AP . o
(B px = 5 THIV0) = 200 B e w7
€

8,* , » y . \
g R B S TR R O (5.5

Fil

where 6, are analogous tc K,. Only the last
obvious ig frame-dependent.

Thus, as in Beltzrmann's equation (4.1), as £ -+ I* there appear additicnal inertial terms in the
expressions for the frame indifferent tensor P® andin the vector @ andas IZ*-»I° the
expressions for P and ¢ are invariant.

The flows connected with these terms transport the energy and entropy without transferring
the mass. However their contribution to the generation of entropy is zerc, /13/. Their
appearance is motivated by the fact that the Coriclis feorce acting on the mclecules is not egual
to the Coriolis "macrcforce” which affects the macrovelume of the gas. Since this force is
perpendicular to the velccity and does not produce the work, it does not give rise to energy
or entropy.

terr whose transformations are particularly

6. The problem of the rctation of a gas as a rigid body in the Barnet* approximation was
discussed in /1—-3/. It was maintained in /2/ that if in an inertial frame of reference I
an isothermal gas is at rest, then in the non-inertial I*-system the Barnett stresses are
non-zero. However, this assertion is false: on substituting into (3.3) and (5.2) u® =11,

T* = const we have p'=conm.P3°)=(X Similarly, using the equation of momentum to determine the
derivatives of the pressure it can be proved that the Barnett stresses in an isothermal gas
which rotates as a rigid body are zerc in any Euclidean frame of reference, contrary to the
assertions in /2/; this is a consequence of the fact that for the motion discussed, Beltzmann's
equation has an exact sclution which is a locally Maxwellian function of ¢ /12/. The same
can be obtained for ¢*.

It was emphasized in /5/ that the source of errors in /2/ discussed is the result of
ignoring the obvious situation: P® and q% should be computed regarding the solution of
a given problem, and not arbitrarily. 1In this connection, an analysis was given in /5/, whichwas
more careful than that in /1/, of the sclutions of Barnett's eguation for a gas rotating as a
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rigid body at a temperature alternating with respect to the radius-vector. Such & motion is
interesting in that the existence of an azimuthal heat flux follows from the last term of
formula (5.5).

7. Thus, we have established that there are no internal contradictions between the
initial equations and their approximate Euclidean transformations in kinetic theory. However,
as was stressed in /4, 5/ it is still necessary to prove that the exact solutions of Boltzmann's
equations for & real gas flow can be frame dependent. 1In other words, it is necessary to
prove the impossibility of a situation where the non-invariant terms of P and g vanish in
the solution of the kinetic equation. Let us assume that in general this situation is imposs-
ible, and consider the gquestion of the limits of applicability of the principle of material
frame~indifference.

First, we shall clarify this principle using a well-known example, see /9/. Let P =
O(V, p, 2, 2,t) where @ is a function of five arguments., Because P is frame-indifferent we
have @* = R*®R*T on (1.1), and the principle in question still requires that @ (V* p* z*"
r* t*) = R*® (V. p. 2", z, 1) R*T. Further analysis shows that @ can depend only on the matrix
of velocity deformation D =1,V = I'7) and does not depend on Q =, (V —VT), that is © =
® (D) (see /9/). 1In other words, in conformity with the principle of materizl frame-in-
difference in a ZIX*-system the arguments of the function @ simply "acquire" asterisks, and
no additional arguments appear.

However, the kinetic theory provides examples where the function @ depends on £, and
therefore on the frame of reference, i.e. the above invariance does not occur, and the principle
of frame-indifference has & limited applicability in the case of the motion cf & gas. In this
connection Murdoch /7/ propesed to widen the applicability of the principle by introducing
& guartity W™* defined in (1.3). Then the constitutive relation will depend on € — W*. and
will be invariant under Euclidean transformations. In inertial frames of reference W™ "dis-
appears”. 1In thic sense, the results of the Chapman-Enskog method will be invariant as well.

However, in such a generalization the domain of applicability cof the principle cf frame
indifference is limited tc the case of small Knudsen numbers Kn <€ 1. when the asymptotic method
for sclving Beoltzmann's eguaticn makes it possible tc close the equation of conservation and
thereby tc pass tc a macroscopic, and not to a kinetic description of the flow.

For all knowr types cf flow, the non-invariant terms in the expressions for the stresses
and heat fluxes egual Kn? in crder of magnitude, compared with unity as Kn— 0. This estimate
defines the domain of applicability of the principle of material frame-indifference in its a
treatment in the case c¢f & gas.
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